
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Proximal Online Gradient Is Optimum for Dynamic
Regret: A General Lower Bound

Yawei Zhao , Shuang Qiu , Kuan Li, Lailong Luo , Jianping Yin , and Ji Liu, Member, IEEE

Abstract— In online learning, the dynamic regret metric
chooses the reference oracle that may change over time, while
the typical (static) regret metric assumes the reference solution
to be constant over the whole time horizon. The dynamic regret
metric is particularly interesting for applications, such as online
recommendation (since the customers’ preference always evolves
over time). While the online gradient (OG) method has been
shown to be optimal for the static regret metric, the optimal
algorithm for the dynamic regret remains unknown. In this
article, we show that proximal OG (a general version of OG)
is optimum to the dynamic regret by showing that the proved
lower bound matches the upper bound. It is highlighted that
we provide a new and general lower bound of dynamic regret.
It provides new understanding about the difficulty to follow the
dynamics in the online setting.

Index Terms— Dynamic regret, lower bound, online convex
optimization, proximal online gradient (POG).

I. INTRODUCTION

ONLINE learning [1]–[8] is a hot research topic for
the last decade of years, due to its application in

practices, such as online recommendation [9], online col-
laborative filtering [10], [11], moving object detection [12],
and many others, as well as its close connection with other
research areas, such as stochastic optimization [13], [14],
image retrieval [15], multiple kernel learning [16], [17], and
bandit problems [18]–[21], etc.

Manuscript received May 7, 2019; revised May 26, 2020, December 12,
2020, and May 5, 2021; accepted May 24, 2021. This work was supported by
the National Key R&D Program of China under Grant No. 2018YFB1003203.
(Yawei Zhao and Shuang Qiu contributed equally to this work.)
(Corresponding author: Jianping Yin.)

Yawei Zhao and Jianping Yin are with the School of Cyberspace Security,
Dongguan University of Technology, Dongguan 523808, China (e-mail:
csyawei.zhao@gmail.com; jpyin@dgut.edu.cn).

Shuang Qiu is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
qiush@umich.edu).

Kuan Li is with the School of Cyberspace Security, Dongguan University
of Technology, Dongguan 523808, China, and also with the Guangdong Key
Laboratory of Intelligent Information Processing, Shenzhen 518052, China
(e-mail: likuan@dgut.edu.cn).

Lailong Luo is with the Science and Technology on Information Systems
Engineering Laboratory, National University of Defense Technology, Chang-
sha 410073, China (e-mail: luolailong09@nudt.edu.cn).

Ji Liu is with the Department of Computer Science, University of Rochester,
Rochester, NY 14620 USA (e-mail: ji.liu.uwisc@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3087579.

Digital Object Identifier 10.1109/TNNLS.2021.3087579

The typical objective function in online learning is to
minimize the (static) regret defined as follows:

T∑
t=1

ft (xt)− min
x∈X

T∑
t=1

ft (x)︸ ︷︷ ︸
the optimal reference

(1)

where xt is the decision made at step t after receiving the infor-
mation before that (e.g., {∇ fs(xs), fs(xs)}t−1

s=1). The optimal
reference is chosen at the point that minimizes the sum of all
component functions up to time T . However, the way to decide
the optimal reference may not fit some important applications
in practice. For example, in the recommendation task, ft (x) is
the regret at time t decided by the t th coming customer and our
recommendation strategy x. Based on the definition of regret
in (1), it implicitly assumes that the optimal recommendation
strategy is constant over time, which is not necessarily true for
the recommendation task (as well as many other applications)
since the costumers’ preference usually evolves over time.

Zinkevich [1] proposed to use the dynamic regret as the
metric for online learning, which allows the optimal strategy
changing over time. More specifically, it is defined by

RA
T :=

T∑
t=1

ft (xt)− min
{yt }T

t=1∈LT
D0

T∑
t=1

ft (yt) (2)

where A denotes the algorithm that decides xt iteratively,
{yt}T

t=1 is short for a sequence {y1, y2, . . . , yT }, and the dynam-
ics upper bound LT

D0
is defined by

LT
D0

:=
{

{yt}T
t=1 :

T −1∑
t=1

�yt+1 − yt� ≤ D0

}
. (3)

It was shown that the dynamic regret of online gradi-
ent (OG) is bounded [1], [22], [23] by

ROG
T � Tη + 1

η
+ D0

η
(4)

where η represents the learning rate and � means “less than
equal up to a constant factor.” This reminds people to ask a
few fundamental questions.

1) As we know, OG is optimum for the static regret
(i.e., the case of D0 = 0), and the dependence on T is
tight. However, is the dependence on the dynamics D0

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8352-0092
https://orcid.org/0000-0002-9651-1061
https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0002-5474-4764

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

tight? In other words, is OG also optimal for dynamic
regret?

2) Is this bound tight enough? If no, how to design a
“smarter” algorithm to follow the dynamics?

3) How difficult is it to follow dynamics in online learning?

Although the dynamic regret receives more and more atten-
tion recently [23]–[28] and some successive studies claim to
improve this result by considering specific functions types
(e.g., strongly convex ft) or considering different definitions
of dynamic regret, these fundamental questions still remain
unsolved.

In this article, we consider a more general setup for the
problem

ft (x) = Ft (x)+ H (x) (5)

with Ft (x) and H (x) being only convex and closed and a more
general definition for dynamic constraint in (6)

LT
Dβ

:=
{

{yt}T
t=1 :

T −1∑
t=1

tβ · �yt+1 − yt� ≤ Dβ

}
(6)

where β and Dβ are the predefined parameters to restrict the
change of reference models over time. We show that the upper
bound of the proximal online gradient (POG) algorithm can
achieve

RPOG
T �

√
T +

√
T 1−β · Dβ (7)

where � means “less than equal up to a constant factor.”
When β = 0 and H (x) ≡ 0, (7) recovers the dependence of

T in (4). However, (7) still holds for proximal mapping when
updating xt . When β > 0, since Dβ < D0T β , (7) is slightly
better than the proved special case in (4).1

To understand the difficulty of following dynamics in online
learning, we derive a lower bound (that measures the dynamic
regret by the optimal algorithm) and show that the proved
upper bound for POG matches the lower bound up to a con-
stant factor, which indicates that POG is an optimal algorithm
even for dynamic regret (not just for static regret).

II. RELATED WORK

In this section, we outline and review the existing work
about online learning problem with the regret in static and
dynamic environments briefly.

A. Static Regret

OG in the static environment has been extensively investi-
gated for the last decade of years [2], [3], [29]. Specifically,
when ft is strongly convex, the regret of OG is O(log T).
When ft (·) is only convex, the regret of OG is O((T)1/2).

B. Dynamic Regret

Zinkevich [1] obtained the regret in the order
of O(Tη + (1/η)+ (D0/η)) for the convex function ft .
Similarly, assume that the dynamic constraint is defined by

1This bound can be achieved by setting η ∝ (1/(T)1/2) + ((Dβ/T))1/2,
which implies that Dβ has to be known to tune the learning rate.

∑T −1
t=1 �yt+1 −�(yt)� ≤ D0, where �(·) provides the predic-

tion about the dynamic environment. When �(yt) predicts the
dynamic environment accurately, Hall and Willett [22], [23]
obtained a better regret than [1].

In addition, assume that ft is α strongly convex and
β smooth, and the dynamic constraint is defined by
D∗ := ∑T −1

t=1 �y∗
t+1 − y∗

t �, where y∗
t := argminy∈X ft (y).

Mokhtari et al. [24] obtained O(D∗) regret. When querying
noisy gradient, Bedi et al. [30] obtained O(D∗ + E) regret,
where E is the cumulative gradient error. Yang et al. [25] and
Gao et al. [31] extended it for nonstrongly convex and noncon-
vex functions, respectively. Shahrampour and Jadbabaie [27]
extended it to the decentrialized setting.2 Furthermore, define
S∗ := ∑T −1

t=1 �y∗
t+1 − y∗

t �2, where y∗
t := argminy∈X ft (y).

When querying O(κ) with κ := (β/α) gradients for every
iteration, Zhang et al. [26] improved the dynamic regret
to be O(min{D∗, S∗}). Comparing with the previous work,
our analysis does not assume the differentiability and strong
convexity of ft .

Other regularities, including the functional variation
[5], [32]–[34], the gradient variation [35], and the mixed
regularity [28], [36], [37], have been investigated to bound
the dynamic regret. Those different regularities cannot be
compared directly because they measure different aspects of
the variation in the dynamic environment. In this article,
we use (6) to bound the regret, and it is the future work to
extend our analysis to other regularities.

György and Szepesvári [38] studied a dynamic regret3 in a
slightly more general setting than (3) by relaxing the distance
metric �yt+1 −yt� to a general �p-norm �yt+1 −yt�p with p ∈
(1, 2]. They obtain an upper bound O((D0/η)+ (1/η)+ Tη)
for an algorithm namely twisted mirror descent (TMD). When
the dynamics D0 is known and can be used to set the
learning rate η ∝ ((D0/T))1/2, the upper bound becomes
O((D0T + T)1/2) [38]. This result is essentially consistent
with our upper bound, but we consider a different algorithm
and a different generalization of the dynamic regret definition
and provide a lower bound more importantly.

Recently, Zhang et al. [39] provided a lower bound of
dynamic regret in the case of β = 0, and Abernethy et al. [40]
and Orabona [41] presented lower bounds of static regret,
that is, β = 0 and D0 = 0. Comparing with the known
results, our lower bound holds for 0 ≤ β < 1 and Dβ > 0,
which, as far as we know, is the first lower bound for
the dynamic regret. Besides, the previous results only hold
for the differentiable function ft , but our lower bound of
dynamic regret still holds for nondifferentiable function ft ,
e.g., �1-norm. In addition, Zhang et al. [39] led to much higher
computational complexity than the work. The reason is that
Zhang et al. [39] maintained O(log T) experts and thus led
to O(log T) updates of the model at an iteration. Comparing
with it, our method updates the model only once for every
iteration.

2The definition of D∗ is changed slightly in the decentrialized setting.
3It is called shifting regret in [38]. To avoid the confusion with many papers

that will be discussed in the following, the shifting regret in this article is
defined in a different way from [38].

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: POG IS OPTIMUM FOR DYNAMIC REGRET 3

C. Shifting Regret (or Tracking Regret)

The M-shifting regret of an algorithm A ∈ A is defined
by [6], [38], [42]–[49]

R̃A
T :=

T∑
t=1

ft (xt)− min
{yt }T

t=1∈LT
M

T∑
t=1

ft (yt) (8)

where LT
M = {{yt}T

t=1 : ∑T −1
t=1 �{yt+1
= yt} ≤ M}. Here, the

dynamics is modeled by the number of changes of the ref-
erence sequence {yt}T

t=1. The shifting regret is closely related
to the dynamic regret and can be considered as a variation of
dynamic regret and is usually studied in the setting of learning
with expert advice. The result in [44] and [50] implies an
upper bound O((MT log2 T)1/2) for the shifting regret. The
results in [6] and [51] imply an improved upper bound to
O((MT log T)1/2). Note that those bounds are achieved under
the condition that M is unknown, that is, M cannot be used
to tune the learning rate η. In other words, those previous
results about the shifting regret do not require knowledge of
the dynamics.

III. NOTATIONS AND ASSUMPTIONS

In this section, we introduce notations and important
assumptions for the online learning algorithm used throughout
this article.

A. Notations

Throughout this article, we use the following notations.
1) A represents the family of all possible online algorithms.
2) F represents the family of loss functions available to

the adversary, where for any loss function ft ∈ F :
X ⊂ R

d �→ R, ft (x) = Ft (x) + H (x) satisfies
Assumptions 1 and 2. FT denotes the function product
space by F × F × · · · × F︸ ︷︷ ︸

T times

.

3) {ut}T
t=1 represents a sequence of T vectors, namely,

{u1,u2, . . . ,uT }. { ft }T
t=1 denotes a sequence of T func-

tions, which is { f1, f2, . . . , fT }.
4) RA

T is the regret for a loss function sequence { ft }T
t=1 ∈

FT with a learning algorithm A ∈ A, where A can be
POG or OG.

5) �·�p denotes the �p-norm. �·� represents the �2-norm by
default.

6) � means “less than equal up to a constant factor” and
� means “greater than equal up to a constant factor.”
∂ represents the subgradient operator. E represents the
mathematical expectation.

B. Assumptions

We use the following assumptions to analyze the regret of
the OG.

Assumption 1: Functions Ft : X ⊂ R
d �→ R for all

t ∈ [T] and H : X ⊂ R
d �→ R are convex and closed but

possibly nondifferential. In particular, ft ∈ F is defined as
ft (x) = Ft (x)+ H (x).

Assumption 2: The convex compact set X is the domain for
Ft and H , and �x−y�2 ≤ R for any x, y ∈ X . Besides, for any
x ∈ X and function Ft , �Gt (x)�2 ≤ G, where Gt(x) ∈ ∂Ft (x).

Algorithm 1 POG
Require: The learning rate ηt with 1 ≤ t ≤ T .
1: for t = 1, 2, . . . , T do
2: Predict xt .
3: Observe the loss function ft with Ft and H , and suffer

loss ft (xt) = Ft (xt)+ H (xt).
4: Query subgradient Gt(xt) ∈ ∂Ft (xt).
5: xt+1 = proxH,ηt

(xt − ηt Gt(xt)).
6: return xT +1

IV. ALGORITHM

We use the POG for solving the online learning problem
with ft (·) in the form of (5). The POG algorithm is a general
version of OG for taking care of the regularizer component
H (·) in ft (·). The complete POG algorithm is presented in
Algorithm 1. Line 4 of Algorithm 1 is the proximal gradient
descent step defined by

xt+1 = proxH,ηt
(xt − ηt Gt(xt))

where the proximal operator is defined as

proxH,ηt
(x�) := arg min

x∈X

{
H (x)+ 1

2ηt
�x − x��2

}
.

Therefore, the update of xt+1 is also equivalent to

xt+1 = proxH,ηt
(xt − ηt Gt (xt))

= arg min
x∈X

�Gt(xt), x� + 1

2ηt
�x − xt�2 + H (x).

The POG algorithm reduces to the OG algorithm when H (·)
is a constant function.

V. THEORETICAL RESULTS

Recall that we now consider an online learning problem
with a dynamic constraint

LT
Dβ

:=
{

{yt}T
t=1 :

T −1∑
t=1

tβ · �yt+1 − yt� ≤ Dβ

}

which is more general comparing with the previous definition
of the dynamic constraint LT

D0
defined in (3).

When β = 0, LT
Dβ

reduces to the previous definition of the
dynamic constraint. Comparing with the previous definition,
when β ≥ 0, Dβ allocates larger weights for the future parts
of the dynamics than the previous parts.

Remark 1: It is worth noting that Dβ is a predefined
parameter to restrict the change of reference models.

In this section, we first present a lower bound, which was
not well studied in previous literature to our best knowl-
edge. Then, we prove an upper bound for the regret based
on our general dynamic constraints via POG, which holds
for a general dynamic regret, instead of β = 0 shown in
previous work. We will show that our proved upper bound
matches the lower bound, implying the optimality of POG
algorithm.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

A. General Lower Bound for Online Convex Optimization

Once we obtain the upper bound for dynamic regret via
POG, namely sup{ ft }T

t=1∈F T RPOG
T , there still remains a ques-

tion, whether our upper bound’s dependence on Dβ and T is
tight enough or even optimal.

Unfortunately, to our best knowledge, this question has not
been fully investigated in any existing literature, even for the
case of the dynamic regret defined with D0.

To answer this question, we attempt to explore the value of
sup{ ft }T

t=1∈F T RA
T for the optimal algorithm A ∈ A, which is

formally written as inf A∈A sup{ ft }T
t=1∈F T RA

T . If a lower bound
for inf A∈A sup{ ft }T

t=1∈F T RA
T matches the upper bound in (10),

then we can say that POG is optimum for dynamic regret in
online learning.

Theorem 1: Assume that Assumptions 1 and 2 hold. For
any 0 ≤ β < 1, the lower bound for our problem with dynamic
regret is

inf
A∈A

sup
{ ft }T

t=1∈F T

RA
T �

√
Dβ · T 1−β + √

T

where A is the set of all possible learning algorithms. ft (x) =
Ft (x)+ H (x), ∀t ∈ [T], with { ft }T

t=1 ∈ FT .
The discussion for the lower bound is conducted in the

following aspects.
1) Insight: The lower bound in Theorem 1 can be inter-

preted by that for any algorithm, there always exists a
problem (or a function sequence in FT such that the
dynamic regret is not less than (Dβ · T 1−β)1/2 + (T)1/2

up to a constant factor. It indicates that the lower bound
matches with the upper bound shown in (10). This
theoretical result implies that the POG is an optimal
algorithm to find decisions in the dynamic environ-
ment defined by Dβ and our upper bound (shown in
Section V-B) is also sufficiently tight. In addition, this
lower bound also reveals the difficulty of following
dynamics in online learning.

2) Novelty: Zhang et al. [39] showed a lower bound for
dynamic regret. Comparing with the known result, our
lower bound has the following novelty.

1) General Bound: Our lower bound holds for any
0 ≤ β < 1, but the result in [39] only holds
for the case of β = 0. When β > 0, it is
the first work to show that the dynamic regret is
	((Dβ · T 1−β)1/2 + (T)1/2).

2) Nondifferentiable ft : Our lower bound holds for
the nondifferentiable function sequence { ft}T

t=1, but
Zhang et al. [39] only held for the differentiable
function sequence { ft }T

t=1.

B. Upper Bound for a General Dynamic Regret (0 ≤ β < 1)

We provide the upper bound for the POG algorithm
described in Algorithm 1 in the following. The complete proof
is provided in the Appendix. It essentially follows the analysis
framework for the OG algorithm. The main novelty lies that
our analysis is more general than previous work. Our upper
bound holds for a general dynamic regret, that is, 0 ≤ β < 1,
instead of β = 0 in previous studies.

Theorem 2: Let 0 ≤ β < 1. Choose the positive learning
rate sequence {ηt }T

t=1 in Algorithm 1 to be nonincreasing.
Under Assumptions 1 and 2, the following upper bound for
the dynamic regret holds:

sup
{ ft }T

t=1∈F T

RPOG
T ≤ √

R max
{ηt }T

t=1

{
1

ηt · tβ

}
· Dβ + R

2ηT

+ G

2

T∑
t=1

ηt + H (x1)− H (xT+1). (9)

To make the dynamic regret more clear, we choose the
learning rate appropriately, which leads to the following result.

Corollary 1: For any 0 ≤ β < 1, we choose an appropriate
γ such that γ ≥ β and 0 ≤ γ < 1. Set the learning rate ηt by

ηt = t−γ ·

√√√√ (1 − γ)
(

2
√

RT 2γ−β−1 Dβ + RT 2γ−1
)

G

in Algorithm 1. Under Assumptions 1 and 2, we have

sup
{ ft }T

t=1∈F T

RPOG
T �

√
Dβ · T 1−β + √

T . (10)

In order to compare the upper bound in (10) with exist-
ing results, we consider the special case that does not
include the nonsmooth term H (·) in the objective and a
particular choice for β = 0. In such case, our upper
bound is O((T D0)

1/2 + (T)1/2), which is consistent with
the known regret [38], [39]. When β > 0, our upper
bound is O((T 1−βDβ)

1/2 + (T)1/2), which extends the known
result [38], [39]. In addition, the upper bound in [39] requires
that the loss function ft is differentiable. However, our upper
bound still holds for nondifferentiable ft .

1) Discussion About the Learning Rate: Corollary 1 holds
under the condition that the dynamics Dβ is known and can
be used to tune the learning rate ηt . However, knowing the
dynamics may be not realistic in the online setting, especially
in the general dynamic environment. One of the promising
extensions about the work is to investigate how to estimate
the dynamics Dβ based on the observed data for some specific
online learning application scenarios.

2) Connections With M-Shifting Regret: Although the shift-
ing regret defined in (8) is different from the dynamic regret
considered in this article, it is worth noting that our result
in (10) also implies an upper bound O((MT)1/2 + (T)1/2)
with respect to the shifting regret defined in (8).

Corollary 2: Set the learning rate ηt by

ηt = t−γ ·
√
(1 − γ)

(
2RT 2γ−1 M + RT 2γ−1

)
G

in Algorithm 1. Under Assumptions 1 and 2, we have

sup
{ ft }T

t=1∈F T

R̃POG
T �

√
MT + √

T

where R̃POG
T follows the definition in (8). The proof is

provided in the Appendix, that is, when M in (8) is known
and can be used to tune the learning rate {ηt}T

t=1, the previous
M-shifting regret has the similar bound with our results.
However, when M is unknown, our result in (10) implies an

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: POG IS OPTIMUM FOR DYNAMIC REGRET 5

Fig. 1. Comparison of average loss between POG and Ader. (a) Synthetic data. (b) Usenet2. (c) Spam.

upper bound O((T)1/2 M + (T)1/2). Under this condition, the
existing result for the shifting regret in [6] is (MT log T)1/2,
which obtains better dependence on the unknown M . It is
highlighted that the existing bound does not require the
knowledge of the dynamics M .

VI. EMPIRICAL STUDIES

In this section, we conduct experiments in the dynamic
environment and show the effectiveness of our method to
follow the dynamics.

A. Experimental Settings

In experiments, we conduct online logistic regression to test
the performance of POG in the dynamic environment. The loss
function at the t th round is

ft (x) = log
(
1 + exp

(−yt A�
t x

)) + ι

2
�x�2

where At and yt are the instance observed at the tth round and
its label, respectively, and ι = 10−3 is a given hyperparameter.
In addition, we compare the performance of POG, that is,
Algorithm 1, with the state-of-the-art method Ader [39] in the
setting of β = 0. We evaluate the performance by measuring
the average loss: (1/T)

∑T
t=1 ft (xt), instead of using the

dynamic regret

T∑
t=1

ft (xt)− min
{yt }T

t=1∈LT
D0

T∑
t=1

ft (yt)

directly. The reason is that the optimal reference points
{x∗

t }T
t=1 := argmin{yt }T

t=1∈LT
D0

∑T
t=1 ft (yt) are the same for both

POG and Ader.
We conduct experiments on a synthetic dataset and two real

datasets, where the dynamic environment is due to that the
data distribution of those datasets keeps changing over time.
The synthetic dataset is generated as follows. A data matrix
A ∈ R

T ×10 consists of T instances, where every instance is
represented by a row of A. Specifically, the tth row of A, that is
At , represents the instance At at the tth round. The elements of
the instance At are generated according to yt ∈ {1,−1}. When
yt = 1, At is generated by sampling from a time-varying
distribution N((1 + 0.5 sin(t)) · 1, I). When yt = −1, At is
generated by sampling from another time-varying distribution

N((−1+0.5 sin(t)) ·1, I). In addition, the real public datasets
include usenet24 (1500 samples) and spam5 (9324 samples).
Both usenet2 and spam are “concept drift” datasets [52], for
which the optimal model changes over time.

Finally, the dynamic budget D0 is fixed as D0 = 10. The
learning rate ηt is set to be ηt = (10−3/(t)1/2). Ader is
an “expert” algorithm, where the number of experts is set
optimally according to [39, Th. 3]. All step sizes used in Ader
are set to be (10−3/(T)1/2).

B. Numerical Results

As shown in Fig. 1, both POG and Ader can decrease
the average loss effectively. Specifically, POG achieves sig-
nificantly better performance than Ader for the synthetic
data and the usenet2 dataset, and both of them achieve a
similar performance for the spam dataset. Since Ader has been
proved to be an optimal online learning method to follow the
dynamics in the setting of β = 0 and D0 > 0, POG can also
be verified to be optimal in this setting.

VII. CONCLUSION

The online learning problem with dynamic regret metric
is particularly interesting for many real scenarios. Although
the OG method has been shown to be optimal for the static
regret metric, the optimal algorithm for the dynamic regret
remains unknown. This article studies this problem from a
theoretical perspective. We show that POG, a general version
of OG, is optimum to the dynamic regret by showing that our
proved lower bound matches the upper bound, which slightly
improves the existing upper bound.

APPENDIX: PROOFS

In this section, we present the detailed proofs for the
theorems in this article. In particular, some necessary lemmas
used in proofs to theorems are placed in the Supplementary
Materials.

In our proofs, we abuse the notations of ∂H (x) a
little bit to represent any vector in the subgradient of
H (x). Gt (x) still represents any vector in ∂Ft (x). We use

4http://mlkd.csd.auth.gr/concept_drift.html
5http://mlkd.csd.auth.gr/concept_drift.html

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Bψ(x, y) := ψ(x)− ψ(y)− �ψ(y), x − y� to denote the Breg-
man divergence with respect to the function ψ .

Lemma 1: Consider a sequence {vt}T
t=1. For any t ∈ [T],

dimensions of vt ∈ {±1}d are independent identically dis-
tributed (i.i.d.) sampled from the Rademacher distribution.
We have

E
{vt }T

t=1

∥∥∥∥∥
T∑

t=1

vt

∥∥∥∥∥
1

� d
√

T .

Proof: We consider the left-hand side

E
{vt }T

t=1

∥∥∥∥∥
T∑

t=1

vt

∥∥∥∥∥
1

= E
{vt }T

t=1

d∑
i=1

∣∣∣∣ T∑
t=1

vt(i)

∣∣∣∣
= d · E

{vt (1)}T
t=1

∣∣∣∣ T∑
t=1

vt(1)

∣∣∣∣ (11)

where vt(i) denotes the i th dimension of vt and {vt(1)}T
t=1 :=

{v1(1), v2(1), . . . , vT (1)}. The second equality holds because
every dimension of vt is independent of each other.

Consider the sequence {vt}T
t=1. If the event, +1 is picked,

happens m times with the probability Pm , then the event, −1
is picked, happens T − m times. Denote ST := ∑T

t=1 vt(1),
and we have

ST = m − (T − m) = 2m − T .

Denote S := {−T,−T + 2, . . . , T − 2, T } and ST ∈ S.
Thus, we have

P(ST = 2m − T) = Pm = 1

2T
·
(

T

m

)
and

E |ST | =
T∑

m=0

|2m − T |
2T

·
(

T

m

)

= 1

2T
·

T∑
m=0

|2m − T | · T !
m! · (T − m)! .

When T is even, denote T = 2J . Thus,

E |ST |

= 1

22J
·

T∑
m=0

|2m − 2J | · (2J)!
m! · (2J − m)!

= (2J)!
22J

·
2J∑

m=0

|2m − 2J |
m! · (2J − m)!

1�
=

(2J)!
22J−2

·
J∑

n=0

n

(J + n)! · (J − n)!

= 1

22J−2
·
(

J∑
n=0

(n + J)

(
2J

J + n

)
−

J∑
n=0

J

(
2J

J + n

))

= 1

22J−2
·
(

2J∑
i=J

i

(
2J

i

)
−

2J∑
i=J

J

(
2J

i

))

2�
=

1

22J−2
·
(

2J∑
i=J

2J

(
2J − 1

i − 1

)
−

2J∑
i=J

J

(
2J

i

))

3�
=

2J

22J−2
·
(

2J−1∑
k=J−1

(
2J − 1

k

)
− 1

4

(
22J +

(
2J

J

)))

= 2J

22J−2
·
(

2J−1∑
k=J

(
2J −1

k

)
+
(

2J −1

J − 1

)
− 1

4

(
22J +

(
2J

J

)))
4�

=
2J

22J−2
·
(

22J−2 +
(

2J − 1

J − 1

)
− 1

4

(
22J +

(
2J

J

)))
= 2J

22J−2
·
((

2J − 1

J − 1

)
− 1

4

(
2J

J

))
= 2J

22J−2
·
(

1

4

(
2J

J

))
= 2J

4J
· (2J)!

J ! · J !
5�

≥ 2J · 1

2
√

J

=
√

T

2
.

Here, 1� holds due to

(2J)!
22J

·
2J∑

m=0

|2m − 2J |
m! · (2J − m)!

= (2J)!
22J

·
(

J∑
m=0

2J − 2m

m! · (2J − m)! +
2J∑

m=J+1

2m − 2J

m! · (2J − m)!

)

= (2J)!
22J

·
J∑

n1=0

2n1

(J − n1)! · (J + n1)!

+ (2J)!
22J

·
J∑

n2=1

2n2

(J + n2)! · (J − n2)!

= (2J)!
22J

·
J∑

n1=0

2n1

(J − n1)! · (J + n1)!

+ (2J)!
22J

·
J∑

n2=0

2n2

(J + n2)! · (J − n2)!

= (2J)!
22J−2

·
J∑

n=0

n

(J − n)! · (J + n)! .

2� holds because, for any 0 ≤ k ≤ N

k

(
N

k

)
= N

(
N − 1

k − 1

)
.

3� holds because

22J =
J∑

i=0

(
2J

i

)
+

2J∑
i=J

(
2J

i

)
−
(

2J

J

)

= 2
2J∑

i=J

(
2J

i

)
−
(

2J

J

)
.

4� holds because

22J−1 =
J−1∑
i=0

(
2J − 1

i

)
+

2J−1∑
i=J

(
2J − 1

i

)

= 2
2J−1∑
i=J

(
2J − 1

i

)
.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: POG IS OPTIMUM FOR DYNAMIC REGRET 7

5� holds because, for any n > 1

1

4n

(
2n

n

)
≥ 1

2
√

n
.

When T is odd, we have

E |ST | = E |ST −1 + vT (1)|
≥ E |ST −1| − E |vT (1)|
= E |ST −1| − 1

=
√

T

2
− 1.

Finally, we obtain

E
{vt }T

t=1

∥∥∥∥∥
T∑

t=1

vt

∥∥∥∥∥
1

� d
√

T .

It completes the proof. �
Proof of Theorem 1:

Proof: Let ft (xt) = Ft (xt) + H (xt), where Ft (xt) :=
�vt , xt� and H (xt) = 0 for all xt ∈ X . Here, vt ∈
{+1,−1}d is a random vector with i.i.d. elements sampled
from the Rademacher distribution. X = {

x ∈ R
d : �x�2 ≤ 1

}
and LT

Dβ
= {{yt}T

t=1 : ∑T −1
t=1 tβ · �yt+1 − yt�2 ≤ Dβ}. Under

this construction, for any given algorithm A ∈ A, we have

sup
{ ft }T

t=1

RA
T = sup

{vt }T
t=1

RA
T ≥ E

{vt }T
t=1

RA
T

= E
{vt }T

t=1

T∑
t=1

ft (xt)− E
{vt }T

t=1

(
min

{yt }T
t=1∈LT

Dβ

T∑
t=1

ft (yt)

)

= E
{vt }T

t=1

T∑
t=1

�vt , xt� − E
{vt }T

t=1

(
min

{yt }T
t=1∈LT

Dβ

T∑
t=1

�vt , yt �
)

= 0 − E
{vt }T

t=1

(
min

{yt }T
t=1∈LT

Dβ

T∑
t=1

�vt , yt�
)

= E
{vt }T

t=1

(
max

{yt }T
t=1∈LT

Dβ

T∑
t=1

�−vt , yt�
)

1�
= E

{vt }T
t=1

(
max

{yt }T
t=1∈LT

Dβ

T∑
t=1

�vt , yt�
)
. (12)

1� holds since the Rademacher distribution is a symmetric
distribution.

Next, we try to estimate the lower bound of
E{vt }T

t=1
max{yt }T

t=1∈LT
Dβ

∑T
t=1�vt , yt�.

One feasible solution of yt is constructed as follows.
1) Evenly split the sequence {yt}T

t=1 into two subsequences:
{ȳt}T1

t=1 := {yt}(T/2)−1
t=1 and {ŷt}T2

t=1 := {yt}T
t=(T/2), where

T1 = T2 = (T/2). {vt}T
t=1 is also split into {v̄t}T1

t=1 and
{v̂t}T2

t=1.
2) Let all �yt�2 ≤ (1/2).
3) Evenly split {ȳt}T1

t=1 into N := �(Dβ/T β
1)�

subsets {yt}(T1/N)
t=1 , {yt}(2T1/N)

t=(T1/N)+1, {yt}(3T1/N)
t=(2T1/N)+1,…,

{yt}T1
t=((N−1)T1/N)+1.

4) For the first subsequence {ȳt}T1
t=1, within the i th subset,

let the values in it be same, and denote it by ui . For the
second subsequence {ŷt}T2

t=1, let all values be uN .

5) Since elements in the second subsequence {ŷt}T2
t=1 have

the same value u, the difference between two elements
is 0. In addition, consider the first subsequence {ȳt}T1

t=1.
Elements in different subsets can be different such that
�ui+1 − ui� ≤ �ui+1� + �ui� ≤ 1. We have

T −1∑
t=1

tβ · �yt+1 − yt� =
T1−1∑
t=1

tβ · �yt+1 − yt� + 0

=
N−1∑
i=1

�ui+1 − ui� ·
(

T1

N
· i

)β

≤ T β
1

N−1∑
i=1

(
i

N

)β
≤ T β

1 (N − 1)

≤ Dβ.

It implies that {ȳt}T1
t=1 and {ŷt}T2

t=1 under our construction
are feasible.

Based on the above steps, we have

E
{vt }T

t=1

(
max

{yt }T
t=1∈LT

Dβ

T∑
t=1

�vt , yt �
)

(13)

= E

{v̄t }T1
t=1

max
{ui }N

i=1

N∑
i=1

〈 (i+1)T1
N∑

t= iT1
N +1

v̄t ,ui

〉

+ E

{v̂t }T2
t=1

max
u

T2∑
t=1

�v̂t ,u�

= 1

2
E

{v̄t }T1
t=1

max
{zi }N

i=1∈X N

N∑
i=1

〈 (i+1)T1
N∑

t= iT1
N +1

v̄t , zi

〉

+ 1

2
E

{v̂t }T2
t=1

max
z∈X

T2∑
t=1

�v̂t , z�

1�
=

1

2
N · E

{v̄t }T1
t=1

∥∥∥∥∥∥∥
(i+1)T1

N∑
t= iT1

N +1

v̄t

∥∥∥∥∥∥∥ + 1

2
E

{v̂t }T2
t=1

∥∥∥∥∥
T2∑

t=1

v̂t

∥∥∥∥∥
2�

≥
1

2
N

1√
d

E

{v̄t }T1
t=1

∥∥∥∥∥∥∥
(i+1)T1

N∑
t= iT1

N +1

vt

∥∥∥∥∥∥∥
1

+ 1

2
√

d
E

{v̂t }T2
t=1

∥∥∥∥∥
T2∑

t=1

v̂t

∥∥∥∥∥
1

3�
�

√
d

2
·
√

T1 N +
√

d

2
·
√

T2

�
√

Dβ · T 1−β + √
T . (14)

Recall that X = {x ∈ R
d : �x�2 ≤ 1} in this example. 1�

holds due to �x�∗ = �x�2 = max�y�≤1�x, y�. 2� holds due to
�x�1 ≤ (d)1/2�x�. 3� holds due to Lemma 1.

Since (14) holds for any algorithm A ∈ A, we thus obtain

inf
A∈A

sup
{ ft }T

t=1∈F T

RA
T = 	

(√
Dβ · T 1−β + √

T

)
.

It completes the proof. �
Proof of Theorem 2:

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Proof: For any sequence of T loss functions { ft }T
t=1 ∈ FT ,

we have
T∑

t=1

(Ft (xt)+ H (xt)− Ft (yt)− H (yt))

=
T∑

t=1

(Ft (xt)+ H (xt+1)− Ft (yt)− H (yt))︸ ︷︷ ︸
I0

+ H (x1)− H (xT+1).

According to Lemma 3, we have

I0 =
T∑

t=1

(Ft (xt)+ H (xt+1)− Ft (yt)− H (yt))

≤
T∑

t=1

1

2ηt

(�yt − xt�2
2 − �yt − xt+1�2

2

)
+ 1

2

T∑
t=1

ηt�Gt(xt)�2

1�
≤

√
R

T −1∑
t=1

1

ηt
(�yt+1 − yt�)+ R

2ηT
+ G

2

T∑
t=1

ηt

≤ √
R max

{ηt }T
t=1

{
1

ηt · tβ

}
· Dβ + R

2ηT
+ G

2

T∑
t=1

ηt .

1� holds due to Lemma 4. Thus, we have

T∑
t=1

(Ft (xt)+ H (xt)− Ft (yt)− H (yt))

≤ √
R max

{ηt }T
t=1

{
1

ηt · tβ

}
· Dβ + R

2ηT
+ G

2

T∑
t=1

ηt

+ H (x1)− H (xT+1). (15)

Since (15) holds for any sequence of loss functions
{ ft }T

t=1 ∈ FT , thus,

sup
{ ft }T

t=1∈F T

RPOG
T ≤ √

R max
{ηt }T

t=1

{
1

ηt · tβ

}
· Dβ + R

2ηT

+ G

2

T∑
t=1

ηt + H (x1)− H (xT+1) .

It completes the proof. �
Proof of Corollary 1

Proof: Assume that ηt := t−γ · σ1, where σ1 is a constant
and does not depend on t . According to Theorem 2, when
γ ≥ β

max
{ηt }T

t=1

{
1

ηt · tβ

}
= T γ−β

σ1
.

Substituting it into (9), we have

RPOG
T ≤

√
RDβ

σ1
T γ−β + R

2σ1
T γ

+ Gσ1

2

T∑
t=1

t−γ + H (x1)− H (xT+1)

1�
≤

√
RDβ

σ1
T γ−β + R

2σ1
T γ + Gσ1

2(1 − γ)
T 1−γ

+ H (x1)− H (xT+1).

1� holds due to 0 ≤ γ < 1 and Lemma 5.
Choosing the optimal σ1 with

σ1 =

√√√√ (1 − γ)
(

2
√

RT 2γ−β−1 Dβ + RT 2γ−1
)

G

we have

RPOG
T ≤

√
2G

√
RDβT 1−β

1 − γ
+
√

G RT

4(1 − γ)

+ H (x1)− H (xT+1)

�
√

Dβ · T 1−β + √
T .

It completes the proof.
�

Lemma 2: The optimal reference points {yt}T
t=1 satisfying∑T −1

t=1 �{yt+1
= yt } ≤ M still satisfy
∑T −1

t=1 �yt+1 − yt� ≤
M(R)1/2.

Proof: Denote at = �yt+1 − yt� and
aT = {at |t ∈ [T − 1]} ∈ R

T −1. Note that
∑T −1

t=1 �{yt+1
=
yt} = �aT �0. Thus, for M-shifting regret,

∑T −1
t=1 �{yt+1
=

yt} = �aT �0 ≤ M . When β = 0, we have
T −1∑
t=1

�yt+1 − yt� = �aT �1 ≤ �aT �0

√
R ≤ M

√
R.

The first inequality holds because, for any 1 ≤ t ≤ T ,
�yt+1 − yt� ≤ (R)1/2. It completes the proof. �

Proof of Corollary 2:
Proof: Replacing D0 by M(R)1/2 in Corollary 1, we have

sup
{ ft }T

t=1∈F T

RPOG
T �

√
MT + √

T .

According to Lemma 2, we obtain

sup
{ ft }T

t=1∈F T

R̃POG
T ≤ sup

{ ft }T
t=1∈F T

RPOG
T �

√
MT + √

T .

It thus completes the proof. �
Lemma 3: Given any sequence {yt}T

t=1 ∈ LT
Dβ

and setting
any ηt > 0 in Algorithm 1, we have

T∑
t=1

(Ft (xt)+ H (xt+1)− Ft (yt)− H (yt))

≤
T∑

t=1

1

2ηt

(�yt − xt�2
2 − �yt − xt+1�2

2

) +
T∑

t=1

ηt

2
�Gt (xt)�2.

Proof: Define ψ(x) := (1/2)�x�2 and xt+1 =
argminx∈X �Gt (xt), x� + (1/ηt)Bψ(x, xt)+ H (x), according to
the optimal condition, for any x ∈ X , we have

0 ≤ �x − xt+1, ηt Gt(xt)�
+�x − xt+1,∇ψ(xt+1)− ∇ψ(xt)+ ηt∂H (xt+1)�. (16)

Then, we have

ηt (Ft (xt)+ H (xt+1)− Ft (yt)− H (yt))

≤ ηt �xt − yt ,Gt (xt)� + ηt �xt+1 − yt , ∂H (xt+1)�

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: POG IS OPTIMUM FOR DYNAMIC REGRET 9

= ηt�xt+1 − yt ,Gt (xt)� + ηt �xt+1 − yt , ∂H (xt+1)�
+ ηt�xt − xt+1,Gt(xt)�

1�
≤ �yt − xt+1,∇ψ(xt+1)− ∇ψ(xt)�

+ ηt�xt − xt+1,Gt(xt)�
2�

= Bψ(yt , xt)− Bψ(xt+1, xt)− Bψ(yt , xt+1)

+ ηt�xt − xt+1,Gt(xt)�
3�

≤ Bψ(yt , xt)− Bψ(yt , xt+1)+ η2
t

2
�Gt (xt)�2.

1� holds due to (16). 2� holds due to three-point identity
for Bregman divergence, which is, for any vectors x, y, and z

Bψ(x, y) = Bψ(x, z)+ Bψ(z, y)− �x − z,∇ψ(y)− ∇ψ(z)�.
3� holds due to ψ(x) = (1/2)�x�2

2 so that Bψ(xt+1, xt) =
(1/2)�xt+1 − xt�2

2. Thus, we finally obtain

T∑
t=1

(Ft (xt)+ H (xt+1)− Ft (yt)− H (yt))

≤
T∑

t=1

Bψ(yt , xt)− Bψ(yt , xt+1)

ηt
+ 1

2

T∑
t=1

ηt�Gt(xt)�2

=
T∑

t=1

�yt − xt�2
2 − �yt − xt+1�2

2

2ηt
+

T∑
t=1

ηt

2
�Gt(xt)�2.

It completes the proof. �
Lemma 4: Given any sequence {yt}T

t=1 ∈ LT
Dβ

and setting a
nonincreasing series 0 < ηt+1 ≤ ηt in Algorithm 1, we have

T∑
t=1

1

ηt

(−�yt − xt+1�2 + �yt − xt�2)
≤ 2

√
R

T −1∑
t=1

1

ηt
(�yt+1 − yt�)+ R

ηT
.

Proof: According to the law of cosines, we have

−�yt − xt+1�2 + �yt+1 − xt+1�2

≤ 2�yt+1 − yt��xt+1 − yt+1� − �yt+1 − yt�2

≤ 2
√

R�yt+1 − yt� − �yt+1 − yt�2

≤ 2
√

R�yt+1 − yt�. (17)

Thus, we obtain

T∑
t=1

1

ηt

(−�yt − xt+1�2 + �yt − xt�2)
=

T −1∑
t=1

(
− 1

ηt
�yt − xt+1�2 + 1

ηt+1
�yt+1 − xt+1�2

)
+ 1

η1
�y1 − x1�2 − 1

ηT
�yT − xT +1�2

≤
T −1∑
t=1

(
− 1

ηt
�yt − xt+1�2 + 1

ηt
�yt+1 − xt+1�2

)

+
T −1∑
t=1

(
1

ηt+1
− 1

ηt

)
�yt+1 − xt+1�2 + 1

η1
�y1 − x1�2

≤
T −1∑
t=1

(
− 1

ηt
�yt − xt+1�2 + 1

ηt
�yt+1 − xt+1�2

)

+ R
T −1∑
t=1

(
1

ηt+1
− 1

ηt

)
+ R

η1

1�
≤ 2

√
R

T −1∑
t=1

1

ηt
(�yt+1 − yt�)+ R

ηT
.

1� holds due to (17). The proof is completed. �
Lemma 5: For any 0 ≤ γ < 1, we have

T∑
t=1

1

tγ
≤ 1

1 − γ
T 1−γ .

Proof: We will use a mathematical induction method to
prove the result. Given 0 ≤ γ < 1, it is trivial to verify that

1

1γ
= 1 ≤ 1

1 − γ
.

For an integer T0, suppose that
∑T0

t=1(1/tγ) ≤ (1/1 −
γ)T 1−γ

0 . Then, we have

T0+1∑
t=1

1

tγ
=

T0∑
t=1

1

tγ
+ 1

(T0 + 1)γ

≤ 1

1 − γ
T 1−γ

0 + 1

(T0 + 1)γ

= 1

1 − γ
(T0 + 1)1−γ

((
T0

T0 + 1

)1−γ
+ 1 − γ

T0 + 1

)
1�

≤
1

1 − γ
(T0 + 1)1−γ

(
1 − 1 − γ

T0 + 1
− γ (1 − γ)

2(T0 + 1)2
+ 1 − γ

T0 + 1

)
≤ 1

1 − γ
(T0 + 1)1−γ .

1� holds due to the Tylor expansion, that is,(
T0

T0 + 1

)1−γ
=

(
1 − 1

T0 + 1

)1−γ

≤ 1 + (1 − γ)

(
− 1

T0 + 1

)
+ (1 − γ)(−γ)

2!
1

(T0 + 1)2
.

It finally completes the proof. �

REFERENCES

[1] M. Zinkevich, “Online convex programming and generalized infinites-
imal gradient ascent,” in Proc. Int. Conf. Mach. Learn. (ICML), 2003,
pp. 928–935.

[2] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2011.

[3] E. Hazan, “Introduction to online convex optimization,” Found. Trends
Optim., vol. 2, nos. 3–4, pp. 157–325, 2016.

[4] M. Mohri and S. Yang, “Accelerating online convex optimization via
adaptive prediction,” in Proc. 19th Int. Conf. Artif. Intell. Statist.
(AISTATS), A. Gretton and C. C. Robert, Eds., vol. 51, May 2016,
pp. 848–856.

[5] L. Zhang, T. Yang, R. jin, and Z.-H. Zhou, “Dynamic regret of strongly
adaptive methods,” in Proc. 35th Int. Conf. Mach. Learn. (ICML),
Jul. 2018, pp. 5882–5891.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[6] K.-S. Jun, F. Orabona, S. Wright, and R. Willett, “Improved strongly
adaptive online learning using coin betting,” in Proc. 20th Int. Conf.
Artif. Intell. Statist. (AISTATS), A. Singh and J. Zhu, Eds., vol. 54,
Apr. 2017, pp. 943–951.

[7] P. Jain, P. Kothari, and A. Thakurta, “Differentially private online
learning,” in Proc. Int. Conf. Learn. Theory (COLT), vol. 23, 2012,
pp. 1–34.

[8] J.-Y. Wang, Y.-J. Zhou, D.-Q. Li, J.-G. Lv, and Q. Dong, “Fast
projection-free algorithm for distributed online learning in networks,”
in Proc. IEEE 18th Int. Conf. Commun. Technol. (ICCT), D. Precup
and Y. W. Teh, Eds. Sydney, NSW, Australia: International Convention
Centre, Oct. 2018, pp. 4054–4062.

[9] S. Chaudhuri and A. T. Tewari, “Online learning to rank with
feedback at the top,” in Proc. 19th Int. Conf. Artif. Intell. Statist.
(AISTATS), A. Gretton and C. C. Robert, Eds., vol. 51, May 2016,
pp. 277–285.

[10] C. Liu, T. Jin, S. C. H. Hoi, P. Zhao, and J. Sun, “Collaborative
topic regression for online recommender systems: An online and
Bayesian approach,” Mach. Learn., vol. 106, no. 5, pp. 651–670,
May 2017.

[11] B. Awerbuch and T. P. Hayes, “Online collaborative filtering with nearly
optimal dynamic regret,” in Proc. 19th Annu. ACM Symp. Parallel
Algorithms Architectures (SPAA), 2007, pp. 315–319.

[12] V. Nair and J. J. Clark, “An unsupervised, online learning framework for
moving object detection,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2004, pp. 317–325.

[13] A. Rakhlin, K. Sridharan, and A. Tewari, “Online learning: Stochas-
tic, constrained, and smoothed adversaries,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2011, pp. 1764–1772.

[14] S. Liu, J. Chen, P.-Y. Chen, and A. Hero, “Zeroth-order online alternating
direction method of multipliers: Convergence analysis and applications,”
in Proc. 21st Int. Conf. Artif. Intell. Statist. (AISTATS), A. Storkey and
F. Perez-Cruz, Eds., vol. 84, Apr. 2018, pp. 288–297.

[15] X. Gao et al., “Sparse online learning of image similarity,” ACM Trans.
Intell. Syst. Technol., vol. 8, no. 5, pp. 64:1–64:22, Aug. 2017.

[16] J. Lu, S. C. Hoi, J. Wang, P. Zhao, and Z.-Y. Liu, “Large scale online
kernel learning,” J. Mach. Learn. Res., vol. 17, no. 47, pp. 1–43, 2016.

[17] Y. Shen, T. Chen, and G. Giannakis, “Online ensemble multi-kernel
learning adaptive to non-stationary and adversarial environments,” in
Proc. 21st Int. Conf. Artif. Intell. Statist. (AISTATS), A. Storkey and
F. Perez-Cruz, Eds., vol. 84, Apr. 2018, pp. 2037–2046.

[18] A. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex opti-
mization in the bandit setting: Gradient descent without a gradient,” in
Proc. ACM/SIAM Symp. Discrete Algorithms (SODA), 2005, pp. 1–12.

[19] R. Arora, O. Dekel, and A. Tewari, “Online bandit learning against an
adaptive adversary: From regret to policy regret,” in Proc. 29th Int. Conf.
Mach. Learn. (ICML), 2012.

[20] J. Kwon and V. Perchet, “Online learning and blackwell approachability
with partial monitoring: Optimal convergence rates,” in Proc. 20th Int.
Conf. Artif. Intell. Statist. (AISTATS), A. Singh and J. Zhu, Eds., vol. 54,
Apr. 2017, pp. 604–613.

[21] T. Kocák, G. Neu, and M. Valko, “Online learning with noisy side
observations,” in Proc. 19th Int. Conf. Artif. Intell. Statist. (AISTATS),
A. Gretton and C. C. Robert, Eds., vol. 51, May 2016, pp. 1186–1194.

[22] E. C. Hall and R. Willett, “Dynamical Models and tracking regret in
online convex programming,” in Proc. Int. Conf. Mach. Learn. (ICML),
2013, pp. 579–587.

[23] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic
environments,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 4,
pp. 647–662, Jun. 2015.

[24] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “Online
optimization in dynamic environments: Improved regret rates for
strongly convex problems,” in Proc. IEEE 55th Conf. Decis. Control
(CDC), Dec. 2016, pp. 7195–7201.

[25] T. Yang, L. Zhang, R. Jin, and J. Yi, “Tracking slowly moving
clairvoyant: Optimal dynamic regret of online learning with true and
noisy gradient,” in Proc. 34th Int. Conf. Mach. Learn. (ICML), 2016,
pp. 449–457.

[26] L. Zhang, T. Yang, J. Yi, R. Jin, and Z.-H. Zhou, “Improved dynamic
regret for non-degenerate functions,” in Proc. Neural Inf. Process. Syst.
(NIPS), 2017, pp. 1–25.

[27] S. Shahrampour and A. Jadbabaie, “Distributed online optimization
in dynamic environments using mirror descent,” IEEE Trans. Autom.
Control, vol. 63, no. 3, pp. 714–725, Mar. 2018.

[28] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online
optimization: Competing with dynamic comparators,” in Proc. Int. Conf.
Artif. Intell. Statist. (AISTATS), 2015, pp. 398–406.

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Feb. 2011.

[30] A. S. Bedi, P. Sarma, and K. Rajawat, “Tracking moving agents via
inexact online gradient descent algorithm,” IEEE J. Sel. Topics Signal
Process., vol. 12, no. 1, pp. 202–217, Feb. 2018.

[31] X. Gao, X. Li, and S. Zhang, “Online learning with non-convex losses
and non-stationary regret,” in Proc. 21st Int. Conf. Artif. Intell. Statist.
(AISTATS), A. Storkey and F. Perez-Cruz, Eds., vol. 84, Apr. 2018,
pp. 235–243.

[32] R. Jenatton, J. Huang, and C. Archambeau, “Adaptive algorithms for
online convex optimization with long-term constraints,” in Proc. The
33rd Int. Conf. Mach. Learn. (ICML), vol. 48, Jun. 2016, pp. 402–411.

[33] C. Zhu and H. Xu, “Online gradient descent in function space,” 2015,
arXiv:1512.02394. [Online]. Available: https://arxiv.org/abs/1512.02394

[34] O. Besbes, Y. Gur, and A. J. Zeevi, “Non-stationary stochastic optimiza-
tion,” Oper. Res., vol. 63, no. 5, pp. 1227–1244, 2015.

[35] C. K. Chiang et al., “Online optimization with gradual variations,”
J. Mach. Learn. Res., vol. 23, pp. 1–20, Jun. 2012.

[36] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization
approach to proactive network resource allocation,” IEEE Trans. Signal
Process., vol. 65, no. 24, pp. 6350–6364, Dec. 2017.

[37] R. Jenatton, J. Huang, D. Csiba, and C. Archambeau, “Online optimiza-
tion and regret guarantees for non-additive long-term constraints,” 2016,
arXiv:1602.05394. [Online]. Available: https://arxiv.org/abs/1602.05394

[38] A. György and C. Szepesvári, “Shifting regret, mirror descent, and
matrices,” in Proc. 33rd Int. Conf. Mach. Learn. (ICML), 2016,
pp. 2943–2951.

[39] L. Zhang, S. Lu, and Z.-H. Zhou, “Adaptive online learning in dynamic
environments,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2018,
pp. 1323–1333.

[40] J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari, “Optimal
strategies and minimax lower bounds for online convex games,” in Proc.
Annu. Conf. Learn. Theory (COLT), 2008, pp. 1–19.

[41] F. Orabona, “A modern introduction to online learning,” 2019,
arXiv:1912.13213. [Online]. Available: https://arxiv.org/abs/1912.13213

[42] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Mach.
Learn., vol. 32, no. 2, pp. 151–178, 1998.

[43] A. György, T. Linder, and G. Lugosi, “Tracking the best of many
experts,” in Proc. Conf. Learn. Theory (COLT), 2005, pp. 204–216.

[44] A. Gyorgy, T. Linder, and G. Lugosi, “Efficient tracking of large classes
of experts,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6709–6725,
Nov. 2012.

[45] J. Mourtada and O.-A. Maillard, “Efficient tracking of a growing
number of experts,” 2017, arXiv:1708.09811. [Online]. Available:
https://arxiv.org/abs/1708.09811

[46] D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk, “A closer look at
adaptive regret,” J. Mach. Learn. Res., vol. 17, no. 23, pp. 1–21, 2016.

[47] C.-Y. Wei, Y.-T. Hong, and C.-J. Lu, “Tracking the best expert in non-
stationary stochastic environments,” in Proc. Adv. Neural Inf. Process.
Syst., D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
Eds., 2016, pp. 3972–3980.

[48] N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and G. Stoltz, “Mirror descent
meets fixed share (and feels no regret),” in Proc. NIPS, 2012, p. 471.

[49] M. Mohri and S. Yang, “Competing with automata-based expert
sequences,” in Proc. 21st Int. Conf. Artif. Intell. Statist., A. Storkey
and F. Perez-Cruz, Eds., vol. 84, Apr. 2018, pp. 1732–1740.

[50] A. Daniely, A. Gonen, and S. Shalev-Shwartz, “Strongly adaptive
online learning,” in Proc. 32nd Int. Conf. Mach. Learn. (ICML), 2015,
pp. 1405–1411.

[51] H. Luo and R. E. Schapire, “Achieving all with no parameters: Adanor-
malhedge,” in Proc. Conf. Learn. Theory (COLT), 2015, pp. 1286–1304.

[52] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Tracking recurring contexts
using ensemble classifiers: An application to email filtering,” Knowl. Inf.
Syst., vol. 22, no. 3, pp. 371–391, Mar. 2010.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 08,2022 at 13:20:24 UTC from IEEE Xplore. Restrictions apply.

