
A New DHT Supporting Multi-Attribute Queries for
Grid Information Services

Yawei Zhao, Fei Cai, Junjie Xie, Lailong Luo, Xiaoqiang Teng, Honghui Chen, Weijie Kong
Science and Technology on Information Systems Engineering Laboratory

National University of Defense Technology, Changsha, Hunan, P.R. China, 410073

Abstract—Recent structured Peer-to-Peer (P2P) systems can’t
be simply applied to grid information services, because grid
resources need to be registered and searched using multiple at-
tributes. This paper proposes a multi-attribute addressable DHT
(MAA-DHT) for grid information services. It uses hypercube
as its logical graph and provides a new resource placement
mechanism based on the values of all attributes, and then
supports query based on all attributes and part attributes. The
join of a new object and object query operation based on all
attributes can be finished within 𝑂(log𝑁) hops for 𝑁 peers.
Then, this paper proposes the lookup algorithm based on global
index, the corresponding query delay is still 𝑂(log𝑁) hops. In
particular, in order to maintain the topology, this paper designs
a novel stabilization protocol for the MAA-DHT, which also
can implement and maintain the global index within 𝑂(2 log𝑁)
rounds. Furthermore, in order to save storage and query time
of the global index, we propose the informed lookup mechanism
based on bloom filters, the query based on part attributes still
can be finished within 𝑂(log𝑁) hops.

I. INTRODUCTION

Grid computing is emerging as a novel approach of employ-
ing distributed computational and storage resources to solve
large-scale problems in science, engineering, and commerce.
Traditional centralized approaches have the inherent drawback
of a single point of failure and it does not scale well to a large
number of grid nodes across autonomous organizations. To
overcome the above shortcomings of centralized approaches,
recent structured P2P systems use message routing instead of
flooding by leveraging a structured overlay network among
peers. These systems typically support distributed hash table
(DHT) functionality and the basic operation they offer is
lookup (key), which returns the identity of the node storing the
object with the key[1] and they provide very good scalability
as well as failure resilience.

A. Motivation

While DHT-based structured p2p networks have some de-
sirable properties[2][3], this kind of hash table functionality
is not enough for grid information services. Grid resources
typically have multiple attributes and thus need to be registered
with a list of attribute-value pairs to the grid information
services. Consequently, resource requesters want to be able
to search resources satisfied the requirement of multiple
attributes from grid information services[4][5]. Traditional
DHTs don’t accommodate the multi-attribute queries, thus they
can’t satisfy the new need of grid information service[6]. D-
to-d mapping scheme such as pSearch[7] maps a d-attribute

resource to a coordinate point in a d-dimensional space. Any
search request is firstly routed to any point in the query region
and then propagated to the remaining points in the region.
Based on d-to-one mapping scheme, Midas[8] uses Hilbert
space-filling curve as the d-to-one mapping function in order
to index multi-attribute resources[9]. MAAN[10] addresses it
by using separate instances of DHTs for each one of the
attributes. However, such a solution is not efficient since it
requires many replicas of same data objects in different peers,
one for each of the index attributes. LORM is built on a single
DHT which is called Cycloid [11], and takes advantage of its
compound graph structure in the way to connect clusters by a
cycle. Each cluster, consisting of several nodes, is responsible
for the information of one attribute.

More recently, Literature[12] devised a static resource
placement and query mechanism based on the multi-attribute
value of resources for the DHT-based Systems. They intro-
duced a tree-based order-preserved hash function, which can
hash each range belonged to a static division of given attribute
space to an identifier. For a multi-attribute resource, they
hashed its value for each attribute to an identifier, and then ob-
tain the final identifier via aggregating those identifiers obeyed
to given mechanism. Those methods proposed in literature[12]
are novel, but can’t implement in fully decentralized model.

B. Contribution

This paper contains three important contributions that effi-
ciently support multi-attribute queries in chord-like system.

First, traditional peer-to-peer system based on distributed
hash function (DHT) usually places object according to its
single attribute value, and just supports single-attribute based
queries. In order to overcome the shortcoming, we propose
a multi-attribute addressable DHT (MAA-DHT). It uses hy-
percube as its logical graph and provides the new object
placement mechanism based on values of all attributes, and
then supports query based on all attributes and part attributes.
The join of new object and object query operation based on
all attributes can be finished within 𝑂(log𝑁) hops, where 𝑁
denotes the number of peers in network.

Second, we propose the lookup mechanism based on global
index in order to lookup object according to part attributes
efficiently. In particular, we design a novel stabilization proto-
col for the MAA-DHT, which not only makes sure the correct
topology but also implements and maintains a global index for

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.237

1675

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.237

1675

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on September 20,2023 at 11:31:19 UTC from IEEE Xplore. Restrictions apply.

each peer within 𝑂(2 log𝑁) rounds. The query delay of our
new method is still 𝑂(log𝑁) hops.

Third, in order to save storage space and decrease query
time of global index, we propose an informed lookup mecha-
nism based on bloom filters. Each participating peer needs to
maintain its finger table and another routing table whose size
is just 𝑂(log𝑁), but the query based on part attributes still
can be finished within 𝑂(log𝑁) hops.

II. BACKGROUND AND RELATED WORK

There has been a lot of recent work on building structured
overlay networks and Distributed Hash Tables (DHTs). We
begin by explaining one such system, which called Chord.
Then we explain a compact data structure named Bloom
Filters, which will be used by our new DHT to support multi-
attribute query.

Chord: Chord is a structured overlay network which allows
efficient routing of a message from one node to any other node
by greedy and clockwise routing. This mechanism requires
only 𝑂(log𝑁) messages for routing between any arbitrary pair
of nodes. Moreover, when a node joins or leaves the system,
it requires only 𝑂(log𝑁) messages to restructure the overlay
network appropriately for the new set of nodes.

Bloom Filters: A bloom filter[13] is a compact data
structure for probabilistic representation of a set in order to
support membership queries. A bloom filter for representing
a set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} of 𝑛 elements is described by
an vector of 𝑚 bits, with all bits initially set to 0. It uses
𝑘 independent hash functions ℎ1, ℎ2, . . . , ℎ𝑘 ranging from 1
to 𝑚. These hash functions map each item in the set to a
random number uniformly over the range 1, 2, . . . ,𝑚. For each
element 𝑥 ∈ 𝑆, the bits ℎ𝑖(𝑥) are set to 1 for 1 ≤ 𝑖 ≤ 𝑘. If
all ℎ𝑖(𝑥) are set to 1, then 𝑥 is a member of 𝑆, although this
would be wrong with some probability. Otherwise, we assume
𝑥 is not a member of 𝑆. Hence a bloom filter may yield a false
positive, for which it suggests that an element 𝑥 is in 𝑆 even
though it is not. Each false positive is due to a bloom filter
collision, in which all bits indexed previously were set to 1
by other elements[13]. The space efficiency is achieved at the
cost of a small probability of false positives in membership
queries. However, for many applications the space savings and
short locating time consistently outweigh this drawback.

III. MULTI-ATTRIBUTE ADDRESSABLE DHT

A. Overview

In general,three well-known families of graphs, which have
been widely studied, are the hypercube, de Bruijn, and Kautz
digraph[14], [15]. Although some work has been done on DHT
based on de Bruijn and Kautz digraph, there is no efficient
specific solution to implement it in a fully decentralized way.
Chord as one of the classic DHT uses hypercube as its logical
graph, but it can not support multi-attribute queries. Multi-
Attribute Addressable DHT (MAA-DHT) addresses this prob-
lem by extending Chord with an object placement mechanism
based on values of multi-attribute and a multi-attribute query
mechanism.

The MAA-DHT also uses hypercube as the logical graph,
thus each peer and object is assigned a unique ID at random
from a circular 𝑚-bit identifier space [0, 2𝑚) for an 𝑚-
dimension hypercube. At its heart, MAA-DHT provides fast
distributed computation of a hash function which maps objects
to nodes responsible for them. It uses bloom filters and
consistent hashing to map object with multi-attribute onto the
identifier space. The identifier space has a distance function,
and in this paper it denotes clockwise distance on the circle.

B. Mapping peers and object onto identifier space

Each participating peer receives an 𝑚-bits identifier, taken
from the identifier space. To implement it, each peer 𝑝 is
assumed to have some unique attribute that can be used for
mapping 𝑝 onto identifier space. The implementation can be
done in several ways. One typical approach is to select or
define a globally known consistent hash function such as SHA-
1, and the hashing result of 𝑝’s IP address modulo 2𝑚 is
chose as the identifier of peer 𝑝. Chord and other DHTs do
it according to a single attribute such as file name of object,
thus they can’t realize multi-attribute query on this condition.
The MAA-DHT first transfer the set of each attribute value
for any object as a bloom filter, and then obtain its identifier
by hashing it.In general, a bloom filter can be changed into
𝑆𝑡𝑟𝑖𝑛𝑔, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 and other data type. Thus, the hashing of a
bloom filter can be done in several ways. But different hash
methods have non influence on the performance and cost of
the algorithm. The identifier length 𝑚 must be large enough
to make the probability of two nodes or objects hashing to the
same identifier negligible.

C. Interconnection between peers

Using peer identifiers and an overlay network, a directed
graph is built. Nodes in this graph represent peers and outgoing
arcs at a node of the graph model routing pointers that the
peer should maintain. Typically, a structured p2p overlay
network is built such as to guarantee logarithmic diameter
while maintaining compact routing table of logarithmic or
constant size.

Each participating peer 𝑝 maintains a routing table with
up to 𝑚 entries, called the finger table. The 𝑖𝑡ℎ entry in the
table at peer 𝑝 contains the identifier of the first peer 𝑠, whose
identifier is at least distance 2𝑖−1 away from the identifier
of peer 𝑝. Peer s can be called the 𝑖𝑡ℎ finger of peer 𝑝, and
denoted it by 𝑝.𝑓𝑖𝑛𝑔𝑒𝑟[𝑖]. A finger table entry includes both
the identifier and access point (including the IP address and
port number) of the relevant peer. The first finger of 𝑝 is the
immediate successor of 𝑝 on the circle and is often called
the successor. On the other hand, to simplify the join and
leave mechanisms, each peer maintains a 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 entry
which records the identifier and IP address for the immediate
predecessor of that peer.

For a new peer, it needs to find the successor peer whose
identifier is equal to or follows 2𝑖−1 addition the identifier of
peer 𝑝 for each 1 ≤ 𝑖 ≤ 𝑚 by itself, and then initialize its
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 by other new peers. Literature[16] has proposed a

16761676

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on September 20,2023 at 11:31:19 UTC from IEEE Xplore. Restrictions apply.

corresponding algorithm, and it is still suitable to MAA-DHT.
Once all participating peers of MAA-DHT have finished their
routing table, it means that the overlay network is completed.

D. Insert new object into MAA-DHT

At any point in time, each peer manages a sub-set of
identifier space. Consistent hashing assigns objects to peers
as follows. Each object is assigned and stored by the first
peer whose identifier is equal to or follows the identifier
of the object in the identifier space, and this peer is called
the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 peer of that object.To maintain the consistent
hashing mapping when a new peer 𝑝 joins the network,
certain identifiers previously assigned to 𝑝’s successor now are
assigned to 𝑛. When 𝑛 leaves the network, all of identifiers
managed by it will be reassigned to 𝑝’s successor.

If a participating peer 𝑝 of MAA-DHT wants to add a
new local object into the network, it will firstly map the new
object onto the identifier space, and then transfer the object to
its successor peer within 𝑂(log𝑁) hops. Algorithm 1 give
a detail description about the progress. In algorithm 1, 𝑚
denotes the predefined length of identifier, and 𝑛 denotes the
predefined number of attributes for all participating objects.

Algorithm 1 Insert(object)
Require: object with multi-attribute is not null and Peer 𝑝 inserts

an object to MAA-DHT network.
1: Create a bloom filter(BF) of the object, and then get its id by

hashing the BF
2: Placement(object.id)
3: Function: Placement(object.id)
4: if id∈ (𝑝.identifer, 𝑝.successor.identifier) then
5: Forwards object to the successor of current peer 𝑝, and store

it locally.
6: else
7: for each 𝑗 = 𝑚 downto 1 do
8: if finger[𝑖]∈(𝑝.identifier,id) then
9: Forwards request to peer 𝑝.finger[𝑖];

10: the target peer invokes Placement(object,id);
11: end if
12: end for
13: Peer 𝑝 stores object locally
14: end if

E. Lookup based on all attributes

Any peer 𝑝 may receive a lookup request which predefine
the values of all attributes for target objects. If peer 𝑝 can
resolve this request, then it responses result and terminates this
request. Otherwise, the lookup request need be forwarded to
its successor peer. The mechanism of resolving lookup based
on all attributes is similar to the mechanism used to insert
new object into MAA-DHT. First, peer 𝑝 maps the lookup
request onto the identifier space, this can be done by hashing
the bloom filters of the payload within this lookup quest.
Furthermore, find the successor peer of the request identifier,
and forward this lookup request to it within 𝑂(log𝑁) hops.
Algorithm 2 gives a detail description about the progress. In
algorithm 2, 𝑚 denotes the predefined length of identifier,

and 𝑛 denotes the predefined number of attributes for all
participating objects.

Algorithm 2 Lookup(request)
Require: Request with multi-attribute is not null and Peer 𝑝

receives a lookup request
1: if request.attributes.length =𝑛 then
2: Create a bloom filter(BF) of the request, and then get its id

by hashing the BF
3: Forward2successor(request,id)
4: end if
5: Function: Forward2successor(request,id)
6: if id∈ (𝑝.identifer,𝑝.successor.identifier) then
7: Forwards object to the successor of current peer 𝑝, and solves

it locally.
8: else
9: for each 𝑗 = 𝑚 downto 1 do

10: if finger[𝑖]∈(𝑝. identifier,id) then
11: Forwards request to peer 𝑝.finger[𝑖].
12: target peer invokes Forward2successor(request, id)
13: end if
14: end for
15: Peer 𝑝 solves object locally
16: end if

IV. LOOKUP BASED ON PART ATTRIBUTES

In the previous section, we have proposed the lookup
algorithm based on all attributes. In reality, upper applications
also need to lookup mechanism based on part attributes not
all attributes. In this section, we will propose two kinds of
mechanism to resolve this kind of need.

A. Lookup mechanism based on global index

For lookup request based on part attributes, how to map
request onto the identifier space becomes the critical problem.
Global index can solve the problem well. Because in this
mechanism,each participating peer knows information about
the global distribution of all participating objects.

Global index can be implemented in several ways, such as
global inverted index. In this paper, we use the identifier, IP
address (including corresponding port), and the bloom filter
of each participating peer as the entry of global index. For
each participating peer, we use a bloom filter to present the
set of each attribute value for all objects. The resulting bloom
filter can be called the local index of that peer. If the local
index of each participating peer can be propagated to all other
peers, and then the global index will be implemented at each
peer. Thus, each peer uses a copy of global index to find the
successors for any lookup request based on part attributes.
Furthermore, the 𝐹𝑜𝑟𝑤𝑎𝑟𝑑2𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 method mentioned in
algorithm 2 can forward lookup request to each successor
within 𝑂(log𝑁) hops. Finally, each successor will resolve
the lookup request locally and response query request if there
is at least one satisfied object hosted locally. In order to
avoid producing too many additional messages because of
constructing and maintaining the global index for each peer,
we will extend the stabilization protocol proposed in Chord to
implement the global index at each peer.

16771677

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on September 20,2023 at 11:31:19 UTC from IEEE Xplore. Restrictions apply.

In order to ensure that the lookups can be executed correctly
as the participating peers change, any DHT must ensure that
each peer’s successor pointer is up to date. It does this by using
a “stabilization“ protocol that every peer runs periodically
in the background which updates each peer’s finger tables
and successor pointers. The stabilization protocol includes
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 and 𝑓𝑖𝑥 𝑓𝑖𝑛𝑔𝑒𝑟𝑠 major methods.The 𝑓𝑖𝑥 𝑓𝑖𝑛𝑔𝑒𝑟𝑠
mentioned in Chord can’t make sure its finger table entries are
correct. The reason is that the 𝑓𝑖𝑛𝑑𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 used can’t find
the new peer whose identifier locates between finger[𝑖 − 1]
and finger[𝑖], thus the finger[𝑖] can’t be updated correctly
for 2 ≤ 𝑖 ≤ 𝑚. Chord periodically uses the method to
identify the new joined nodes and left ones and tries to solve
each query in any circumstances. Algorithm 3 gives a detail
introduction about the new 𝐹𝑖𝑥𝑓𝑖𝑛𝑔𝑒𝑟𝑠 method of MAA-
DHT, which not only makes sure the correctness of finger table
but also implements the global index. Every participating peer
periodically calls 𝐹𝑖𝑥𝑓𝑖𝑛𝑔𝑒𝑟𝑠 to make sure its finger table
entries are correct. It is easy to know that each call only fix
the next one entry according to the index parameter used by
𝐹𝑖𝑥𝑓𝑖𝑛𝑔𝑒𝑟𝑠 method. Notice that 𝐹𝑖𝑥𝑓𝑖𝑛𝑔𝑒𝑟𝑠 method doesn’t
fix the first entry, in general, which is fixed by the 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒
method.

Each call of the 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 method sends the message with
identifier and bloom filter of caller to its successor peer, and
forward other same type messages to its successor. Each call of
the Fixfingers method will propagate the local index and index
of other peers received from its neighbor to all peers range over
(caller.finger[index-1].identifier, caller.finger[index].identifier].
The local index of any peer will be propagated to all peers of
MAA-DHT network within 𝑂(2 log𝑁) round of stabilization
under the contribution of 𝐹𝑖𝑥𝑓𝑖𝑛𝑔𝑒𝑟𝑠 and 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 methods.
Furthermore, the changes of objects hosted by any peer also
can be known by all other peers after 𝑂(2 log𝑁) round of
stabilization.

Algorithm 3 Fixfingers()
Require: Peer 𝑝 updates one entry of its finger table in one round

of stabilization
1: for (do each 𝑖 = 1 to m)
2: Create or obtain the index message 𝑚𝑔𝑒 with identifier and

bloom filter of peer 𝑝
3: Left ← 𝑝.identifier + 2(𝑖𝑛𝑑𝑒𝑥−2)

4: Right ← 𝑝.finger[index].identifier
5: 𝑚𝑔𝑒.right ← right
6: 𝑝0 ← finger[index-1]
7: finger[index] ← 𝑝.Increment(𝑝0,𝑚𝑔𝑒)
8: Function: Increment(p0,mge)
9: Peer 𝑝 sends the index message 𝑚𝑔𝑒 to peer 𝑝0

10: Peer 𝑝0 propagates the local index to all peers range over
(left, right]

11: middle ← 𝑝0.successor
12: if 𝑝.middle.identifier ∈ [left, right] then
13: return middle
14: else
15: return 𝑝0.Increment(middle)
16: end if
17: end for

In reality, controlling the stabilization rate and size of each
message can decrease the overhead of stabilization. If the
stabilization rate increases, the accuracy of global index and
success rate of query increases at the same rate, but the
resulting messages overhead also increases at the same time.
There is a tradeoff between the stabilization rate and the
success rate of query.

B. Informed Lookup mechanism based on Bloom Filters

The Lookup mechanism based on global index can meet the
need of lookup based on part attributes, but each peer must
maintain the global index with 𝑁 entries and the finger table.
The storage space and time used to scan the whole global
index will be large. In order to overcome this problem and
support the lookup based on part attributes at the same time,
we propose the informed lookup mechanism based on bloom
filter. For this new mechanism, each participating peer need
maintain its finger table and another routing table whose size
is just 𝑂(log𝑁).

In nature, informed lookup protocol is one kind of forward-
based routing protocol. It has two major components, the
construction and maintenance mechanism of routing table,
and a query forward mechanism using the routing table.
The routing table is a set of bloom filters, and each entry
corresponding to an input link. For each peer, if it receives
the first index message coming from a peer, it will believe
there is an input link from that peer to it and construct a
routing entry for that input link. Figure 1 shows that node 0
constructs three input links with node 1, node 2 and node 5.
The initialized bloom filter for that link is assigned using the
bloom filter enveloped in the received index message. The
ongoing index message received from the same input link
will update the bloom filter, this can be done by a logical
𝑜𝑟 operation between the bloom filter of that input link and
the bloom filter enveloped in the ongoing index message.

The lookup mechanism based on part attributes is tightly
associated with the bloom filter corresponding to each input
link. When a peer issue a lookup based on part attributes, that
peer will try to resolve it itself. Furthermore, the bloom filters
corresponding to each input link of that peer will be scanned
and desired links will be filtered out as the candidate input
links, finally the lookup request will be forward to the inverted
direction of candidate input links. Figure 4 shows that if there
exists a part attribute query in the node 0. It solves it itself
and then checks which input links can result in more results.
The peers received those lookup request will try to resolve it
by those its local objects, and also forward that lookup request
to all candidate directions if there is at least one desired input
link. Algorithm 4 gives a detail description about the informed
lookup progress.

For any pair of source and sink peer, there exists only
one path by which the index message of source peer can
be forwarded to sink peer. This fact can be guaranteed by
algorithm 3. In other word, for lookup aimed at the objects
stored by the source peer, there is only one forward path from
the sink peer to the source peer, and the length upper bound

16781678

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on September 20,2023 at 11:31:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Three input links are constructed by informed lookup protocol

is 2 log𝑁 . That means that any lookup based on part attribute
issued from any peer will be resolved by all candidate peers
within 𝑂(log𝑁) hops.

There is false negative (The lookup mechanism believes that
none peer can meet the constraint of lookup, even there exists
at least one peer which can) if a node issues a lookup based on
part attributes before the index message of desired peers has
propagated over the whole p2p network. This problem is also
faced by the lookup mechanism based on global index. The
false negative can decrease if the stabilization rate improves,
because more frequent stabilization operation can make sure
all peers obtain the out-of-data index message about other
peers. It is also need to make decision about the tradeoff
between overhead and accuracy.

Algorithm 4 InformedLookup(query)
Require: peer 𝑝 issues a lookup query based on part attributes

1: for each 𝑖 = 1 to inputlinks.length do
2: for each 𝑗 = 1 to query.attributes.length do
3: BF ← inputlinks.[𝑖].bloomfilter
4: if BF.Query(query.attributes[𝑗]) = false then
5: break;
6: end if
7: Peer 𝑝 forward query to peer whose identifier is

inputlinks.[𝑖].identifier
8: end for
9: end for

V. SIMULATION

MAA-DHT is verified by finishing lookup request success-
fully and measuring its performance. The implementation uses
sockets to communicate between the peers, and new object can
be added by contacting any existing peer at its IP address and
port number.

It can easily be configured to support different attribute
schemas. We choose the book information as an example.
Book information contains name, author and publishing house,
which can be viewed as the attributes of a book. The entire
experiment includes checking the correctness of lookup mech-
anism based on the whole attributes and part attributes, and
analysing the efficiency difference of multi-attribute queries
between MAA-DHT and MAAN as well as the false positive
of bloom filter.

We establish a Chord model with 100 nodes, which stores
10,000 objects and each object uses three strings to represent
its properties. The object (“Brief History of Time”, “Hawk-
ing”, “Bantam Dell Publishing Group”) can be converted to a
bloom filter. Then we establish a global index list to store all

local indexes and then broadcast the copy of global index to
others. After the whole process, a query request which contains
part attributes “Brief History of Time” and “Hawking” is
generated. The lookup mechanism is proved to be correct
because we can find the object successfully

In fact, the object (“Brief History of Time”, “Hawking”,
“Bantam Dell Publishing Group”) is only stored in one node.
But two nodes are chosen as the responded node. The reason
is that the bloom filter has a false positive. In this experiment,
the number of the hash function is 5, and the number of bits for
the bloom filter is 3000. The unwanted node has stored 429
objects and the number of element, which denotes its local
index, reaches 1287. Its false positive reaches 0.536, and it is
too large for use. One reason is that node identifiers do not
uniformly cover the entire identifier space[16]. The consistent
hash paper solves this problem by associating keys with virtual
nodes, and mapping multiple virtual nodes (with unrelated
identifiers) to each real node. Ideally, each node stores 100
objects and false positive is 9.43× 10−3.

MAAN proposes two mechanisms to solve the multi-
attribute query. 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 addresses it
by using separate instances of DHTs for each one of
the attributes. This solution is easy to implement, but
its performance is bad, and it costs too much stor-
age place. In fact, it takes 𝑂(𝑀 log𝑁) routing hops to
solve the query. 𝑀 denotes the number of attributes.
𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 improves the
performance of 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, which can finish
the process in 𝑂(log𝑁) routing hops, and saves part of storage
place, but it also needs to replicate the object for each one
of the attributes. However, lookup mechanism based on all
attributes takes 𝑂(𝑀 log𝑁) routing hops to solve the query,
and does not cost much additional storage place.

We consider a network with 10000 multi-attribute objects,
and vary the total number of nodes from 2 to 1024. For each
value, we repeat the experiment 100 times. Figure 2 plots the
mean and the minimum and maximum of the routing hops
for queries. As expected, the measured average routing hops
only increase logarithmically with the number of nodes, and
it roughly match with our theoretical analysis. Bloom filter
has false positive and it may cause some wrong results. When
a node issues a part attribute query, it transforms the query
request to a bloom filter and then checks the global index to
find the whole nodes which may contains the objects we need.
However, some nodes are called the bad routings which are
meaningless and cost extra time because of the false positive
of bloom filter. The percentage of bad routing has a significant
impact on the performance of query because of the false
positive of bloom filter.

Figure 4 shows the percentage of bad routing over a range
of the numbers of bits for the bloom filter. Experiments with
larger than one thousand bits for the bloom filter are conducted
by running the model 10 times independently. For each number
of bits shown in Figure 4, there are 100 part-attribute queries
and the graph plots the average of percentage of bad routing
in the whole lookups. It can be seen from Figure 4 that the

16791679

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on September 20,2023 at 11:31:19 UTC from IEEE Xplore. Restrictions apply.

4 16 64 256 1024
0

2

4

6

8

10

Number of nodes

R
ou

tin
g

ho
ps

minimum and maximum

Fig. 2. The number of routing hops is a logarithmic
function of network size

0 2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

Number of objects

R
at

e
of

 b
ad

 r
ou

tin
g

the average rate

Fig. 3. The percentage of bad routing increases with
the number of objects

512 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Number of bits

Pr
ec

en
t o

f
w

ro
ng

 r
ou

tin
g

average precentage

Fig. 4. The percentage of bad routing decreases
with the number of bits

percentage of bad routing decreases with number of bits for
the bloom filter obviously. It is an effective way to decrease
the bad routing by increasing the number of bits appropriately.

MAA-DHT uses a bloom filter to identify one specular
object. It hashes all the attributes of an object to a bloom filter
and then gets the identifier by hashing the bloom filter. Figure
3 shows that the rate of bad routing increases as the number
of objects stored in the node. It is easy to understand because
if one node stores more objects, the more hash functions is
used to get the bloom filter, and the more faults will be made.
MAA-DHT uses the Chord-like model and avoids the problem
by “virtual node”[16].

We has known the MAA-DHT can implement multi-
attribute queries by bloom filters. It creates one bloom filter
for a multi-attribute object by hashing each of the object’s
attributes. No matter how many attributes the object has,
MAA-DHT can finish the query by costing a certain amount
of storage space.

VI. CONCLUSION

This paper proposes a new distributed hash table named
multi-attribute addressable DHT supporting multi-attribute
queries. It provides a new object placement mechanism based
on values of all attributes, and then support query based on all
attributes and part attributes. The join of new object and object
query operation based on all attributes can be finished within
𝑂(log𝑁) hops for 𝑁 peers. Then, this paper proposes the
lookup algorithm based on global index for those query based
on only part attributes, the corresponding query delay is still
𝑂(log𝑁) hops. In particular, we design a novel stabilization
protocol for the MAA-DHT to implement and maintain the
global index within 𝑂(2 log𝑁) rounds. Furthermore, in order
to save storage and query time of the global index, we proposes
an informed lookup based on bloom filters, the query based
on part attributes still can be finished within 𝑂(log𝑁) hops.

In the future, we will design and implement new distribute
hash table supporting range and multi-attribute queries togeth-
er. Furthermore, we will study other scalable data structures
and distributed spatial index, and design new structured peer-
to-peer network.

ACKNOWLEDGMENT

This work is funded by the NSFC under Grant No.
61070216 and the Hunan Provincial Innovation Foundation
for Postgraduate under Grant No.B130503.

REFERENCES

[1] S. Ratnasamy, I. Stoica, and S. Shenker, “Routing algorithms for dhts:
Some open questions,” in Peer-to-Peer Systems, ser. Lecture Notes in
Computer Science, P. Druschel, F. Kaashoek, and A. Rowstron, Eds.
Springer Berlin Heidelberg, 2002, vol. 2429, pp. 45–52.

[2] D. Guo, H. Chen, and X. Luo, “Resource information management of
spatial information grid,” in In: LNCS3032. Springer, 2003, pp. 240–
243.

[3] C. Yang, D. Guo, Y. Ren, X. Luo, and J. Men, “The architecture of sig
computing environment and its application to image processing.”

[4] D. Guo, J. Wu, H. Chen, and X. Luo, “Moore: An extendable peer-to-
peer network based on incomplete kautz digraph with constant degree,”
in IN: PROC. 26TH IEEE INFOCOM, IEEE COMPUTER SOCIETY
PRESS, LOS ALAMITOS, 2007.

[5] D. Guo, H. Chen, Y. Liu, and X. Li, “Bake: A balanced kautz tree
structure for peer-to-peer networks,” in In Proc. 27th IEEE INFOCOM,
2008.

[6] Y. Yuan, D. Guo, G. Wang, and L. Chen, “Removing uncertainties from
overlay network,” in Database Systems for Advanced Applications, ser.
Lecture Notes in Computer Science, J. Yu, M. Kim, and R. Unland,
Eds. Springer Berlin Heidelberg, 2011, vol. 6587, pp. 284–299.

[7] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information retrieval
using self-organizing semantic overlay networks,” in Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’03. New
York, NY, USA: ACM, 2003, pp. 175–186.

[8] V. March and Y.-M. Teo, “Multi-attribute range queries on read-only
dht,” in Computer Communications and Networks, 2006. ICCCN 2006.
Proceedings.15th International Conference on, 2006, pp. 419–424.

[9] Y. LAN and H. DENG, “A comparative study of three kind of multi-
attribute range query based on dht,” Journal of Computational Informa-
tion Systems, vol. 8, no. 6, pp. 2657–2669, 2012.

[10] M. Cai, M. Frank, J. Chen, and P. Szekely, “Maan: A multi-attribute
addressable network for grid information services,” Journal of Grid
Computing, vol. 2, no. 1, pp. 3–14, 2004.

[11] H. Shen, C. Xu, and G. Chen, “Cycloid: A scalable constant-degree p2p
overlay network,” Performance Evaluation, vol. 63, no. 3, pp. 195–216,
2012.

[12] D. Li, X. Lu, B. Wang, J. Su, J. Cao, K. Chan, and H. va Leong, “Delay-
bounded range queries in dht-based peer-to-peer systems,” in Distributed
Computing Systems, 2006. ICDCS 2006. 26th IEEE International Con-
ference on, Lisboa, Portugal, 2006, pp. 64–64.

[13] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, pp. 422–426, 1970.

[14] D. Guo, Y. Liu, and X. Li, “Bake: A balanced kautz tree structure for
peer-to-peer networks,” in INFOCOM 2008. The 27th Conference on
Computer Communications. IEEE, Phoenix, AZ, USA, 2008, pp. 2450–
2457.

[15] D. Guo, J. Wu, Y. Liu, H. Jin, H. Chen, and T. Chen, “Quasi-kautz
digraphs for peer-to-peer networks,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 22, no. 6, pp. 1042–1055, 2011.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. D-
abek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” Networking, IEEE/ACM Transactions
on, vol. 11, no. 1, pp. 17–32, 2003.

16801680

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on September 20,2023 at 11:31:19 UTC from IEEE Xplore. Restrictions apply.

